Text analytics reduces regulatory affairs costs, speeds compliance

Overview

Pharmaceutical companies need tools to enable rapid and effective responses to regulatory challenges.

Text analytics can bring value in a wide range of regulatory use cases:

- **Text analytics for compliance and master data management**: Extracting data attributes from regulatory documents (SMPC, eCTDs, CMC documents) for compliance with standards (e.g. IDMP, xEVMPD) or master data management.

- **Identifying discrepancies in regulatory documents**: Finding errors in documents prior to submission, to reduce time for manual checking, including automated cross-checks for MedDRA adverse event coding consistency.

- **Response to regulatory questions**: Text analytics to capture and analyze Response to Questions (RTQs) for more effective data re-use.

Introduction

The pharmaceutical industry is among the most heavily regulated in the world. Text analytics speeds up and reduces the cost of regulatory compliance, as the huge volume of text-heavy documents means that manual efforts are often slow and expensive.

Recent and upcoming changes in regulation mean that companies require new tools and solutions to assist with regulatory review and compliance. In some cases, meeting the regulators’ requirements is straightforward, while in other cases, accessing the necessary data can take a significant amount of time, money and effort, all of which increases costs but does not necessarily increase revenue. The case studies below demonstrate the value that text analytics can bring for regulatory affairs.

Text analytics for compliance and master data management

IDMP (IDentification of Medicinal Products) is a set of international standards developed by ISO that will become mandatory in Europe in a phased approach, fully effective from 2021; it is expected to be adopted by the FDA and globally over the next few years.

Capturing the hundreds of data attributes required per product, 70% of which lie in a variety of unstructured text sources, demands time, resources and investment. But structuring this valuable data can benefit the broader organization, enabling better data governance and master data management across discovery, development, clinical and manufacturing.

Linguamatics’ NLP text mining solution can save organizations time and money by rapidly finding,
extracting, standardizing and structuring the required data elements from IDMP-relevant unstructured text documents, including Summary of Product Characteristics (SmPC) documents (Figure 1); manufacturing licenses; Chemistry, Manufacturing and Control (CMC) documents; and regulatory and compliance documents, e.g. electronic Common Technical Documents (eCTDs).

Figure 1: Example Of Text Analytics From SmPC Document For IDMP Data Elements

<table>
<thead>
<tr>
<th>Doc</th>
<th>Compound</th>
<th>Name</th>
<th>Strength Part</th>
<th>Pharmaceutical Dose Form</th>
<th>#Hits</th>
<th>Hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levitra</td>
<td>Vardenafil Hydrochloride</td>
<td>Levitra 5 mg film-coated tablets</td>
<td>5 mg</td>
<td>film-coated tablets</td>
<td>1</td>
<td>Levitra 5 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td>Trihydrate</td>
<td>Levitra 10 mg film-coated tablets</td>
<td>10 mg</td>
<td>film-coated tablets</td>
<td>1</td>
<td>Levitra 10 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Levitra 10 mg orodispersible tablets</td>
<td>10 mg</td>
<td>orodispersible tablets</td>
<td>1</td>
<td>Levitra 10 mg orodispersible tablets</td>
</tr>
<tr>
<td>ZeborafNN</td>
<td>Vemurafenib</td>
<td>Levitra 20 mg film-coated tablets</td>
<td>20 mg</td>
<td>film-coated tablets</td>
<td>1</td>
<td>Levitra 20 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeboraf 240 mg film-coated tablets.</td>
<td>240 mg</td>
<td>film-coated tablets</td>
<td>1</td>
<td>Zeboraf 240 mg film-coated tablets</td>
</tr>
<tr>
<td>Addurazyme_EN</td>
<td>Laronidase</td>
<td>Addurazyme 100 U/ml concentrate for solution for infusion</td>
<td>> 100 U</td>
<td>concentrate for solution for infusion</td>
<td>1</td>
<td>Addurazyme 100 U/ml concentrate for solution for infusion</td>
</tr>
<tr>
<td>FluodaraTablets_EN</td>
<td>Oral Fluoridine Phosphate</td>
<td>Fluodara oral 10mg film-coated tablets</td>
<td>10mg</td>
<td>film-coated tablets</td>
<td>1</td>
<td>Fluodara oral 10mg film-coated tablets</td>
</tr>
<tr>
<td>Taxotere_EN</td>
<td>Docetaxel</td>
<td>TAXOTERE 20 mg/0.5 ml concentrate and solvent for solution for infusion</td>
<td>> 20mg</td>
<td>concentrate and solvent for solution for infusion</td>
<td>1</td>
<td>TAXOTERE 20 mg/0.5 ml concentrate and solvent for solution for infusion</td>
</tr>
<tr>
<td>Gilev_MSP_clean</td>
<td>Imatinib Mesylate</td>
<td>Gilev 50 mg hard capsules</td>
<td>50 mg</td>
<td>hard capsules</td>
<td>1</td>
<td>Gilev 50 mg hard capsules</td>
</tr>
<tr>
<td>Miparna_MSP_clean</td>
<td>Cinacalcet Hydrochloride</td>
<td>Miparna 30 mg film-coated tablets.</td>
<td>30 mg</td>
<td>film-coated tablets</td>
<td>1</td>
<td>Miparna 30 mg film-coated tablets.</td>
</tr>
<tr>
<td>Pegasy_MSP_clean</td>
<td>Peginterferon Alfa-2a</td>
<td>Pegasy 90 micrograms solution for injection in pre-filled syringe</td>
<td>> 90 micrograms</td>
<td>solution for injection for injection</td>
<td>1</td>
<td>Pegasy 90 micrograms solution for injection in pre-filled syringe</td>
</tr>
<tr>
<td>Urox_MSP_clean</td>
<td>Sildoson</td>
<td>Urox 4 mg hard capsules</td>
<td>4 mg</td>
<td>hard capsules</td>
<td>1</td>
<td>Urox 4 mg hard capsules</td>
</tr>
<tr>
<td>YervoY_MSP_clean</td>
<td>Ipilimumab</td>
<td>YervoY 5 mg/ml concentrate for solution for</td>
<td>> 5 mg</td>
<td>concentrate for solution for</td>
<td>1</td>
<td>YervoY 5 mg/ml concentrate for solution for</td>
</tr>
</tbody>
</table>

The NLP platform can extract structured results for key data elements, e.g. pharmaceutical dose form, name, strength, from a set of SmPCs.

ANNEXI

SUMMARY OF PRODUCT CHARACTERISTICS

1. **NAME OF THE MEDICINAL PRODUCT**

 Levitra 5 mg film-coated tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

 Each tablet contains 5 mg of vardenafil (as hydrochloride).

 For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

 Film-coated tablet.

 Orange round tablets marked with the BAYER-cross on one side and “5” on the other side.

4. **CLINICAL PARTICULARS**

 4.1 Therapeutic indications

 Treatment of erectile dysfunction in adult men. Erectile dysfunction is the inability to achieve or maintain a penile erection sufficient for satisfactory sexual performance.

 In order for Levitra to be effective, sexual stimulation is required.

 4.2 Posology and method of administration

 Posology Use in adult men

 The recommended dose is 10 mg taken as needed approximately 25 to 60 minutes before sexual activity. Based on efficacy and tolerability the dose may be increased to 20 mg

Cached copy of the SmPC document, showing the highlighted mark-up for the extracted text around Levitra. Clicking on the “hit” mark-up in the tabular results takes the user directly to the correct place in the document, enabling rapid and efficient review.
The challenges of IDMP data capture from unstructured data containers are many, including:

- data extraction from internal and external documents;
- differing document types and formats;
- different styles from document authors;
- content that can be verbose or tabular;
- MedDRA coding needed for harmonization of adverse events or indications;
- different languages; and
- flexibility needed, as IDMP framework, timelines and scope are still evolving.

BENEFITS OF TEXT ANALYTICS FOR EXTRACTION OF IDMP DATA ELEMENTS

A text analytics approach brings multiple benefits over manual data extraction from unstructured text. Copying and pasting relevant data from documents into spreadsheets is intensive, repetitive and tedious work, and is also prone to errors. Text mining uses business rules and standard vocabularies to systematically create a consistent, normalized set of product data, and can be used across tens, hundreds or thousands of documents. Business rules can be rapidly translated into search queries, and this flexibility is key when the IDMP framework is still evolving. This approach can also be used for other reporting frameworks such as xEVMPD, or to provide data suitable for enterprise master data management.

Identifying discrepancies in regulatory documents

REGULATORY QA SUMMARY

Quality control of regulatory documents before submission is an important step in the drug regulation process. Consolidation of the various reports and documents into the overview document set required by the regulator necessitates significant volumes of manual checking and cross-checking, from the subsidiary documents to the master. The process is generally manual and, therefore, both slow and error-prone. Errors can result in applications being delayed.

Linguamatics has worked with its top 20 pharma customers to develop workflows to improve the quality control of regulatory documents. This can include cross-checking MedDRA coding, checking references to tables, highlighting format and calculation errors, and finding discrepancies between the summary document and source documents. These checks require the use of advanced processing to extract information from tables in pdf documents, as well as natural language processing to analyze the free text.

Using the NLP platform to identify inconsistencies within submissions can save weeks of tedious manual checking and prevent a re-submission request, potentially saving months of time and millions of dollars.

WORKFLOWS FOR ERROR DETECTION

Typical workflows implemented include these steps:

- Process pdf documents: This includes OCR to convert the pdfs to standard HTML or Word DOCX format; table processing to add metadata to tables within the documents; and indexing to create a corpus of documents ready for querying.

- I2E querying: Errors of various types are identified in the documents via business rules encoded in I2E queries (Table 1).

- Cross-checking MedDRA coding, for MedDRA labels, hierarchies and identifiers (Figure 2).

- Post-processing, to generate a report dashboard describing the errors. Rendered versions of the documents can be highlighted to show the errors, with different error types colored distinctively (Figure 3).

- Email notification: Once complete, workflows can be created to send an alerting email to the registered user with a link to the results dashboard.

Response to regulatory questions

Responding to regulatory questions can be a challenge. Companies often have a goal to respond to questions within a certain time frame. Short turnaround cycles can lead to a messy submission with lots of appended information and orphaned responses. Capturing and analyzing the RTQs sent to regulatory
agencies around the world enables pharmaceutical companies to gain insights on:

- frequently asked questions based on current new drug submissions;
- current regulatory questions and concerns;
- trends in regulatory concerns by product type (e.g. antibody-drug conjugates) and therapeutic area; and
- geographical pattern of regulatory concerns.

By mining past questions, product development teams can anticipate future regulatory questions and concerns, and proactively address them in the initial submission, thereby shortening approval times. Linguamatics I2E is used to mine RTQs in order to answer complex questions such as: “Was a request made for more information on the mechanisms of action of a product?”, “Was product quality a concern?” and “Were there questions around stability, clearance, model validation?”

Effective use of these RTQ responses by the product-development teams reduces the number of errors prior to submission, and allows the teams to anticipate what the different regulatory requirements are, and how that can influence current and future development.

Table 1: Example Error Categories Include Searching For Specific Single Terms, Or Comparing Terms Within A Sentence, A Table Row Or A Document, Or Across The Entire Document Set

<table>
<thead>
<tr>
<th>ERROR CATEGORY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing source tables</td>
<td>Identify references in the summary document to source tables not appearing in the same document bundle</td>
</tr>
<tr>
<td>MedDRA label errors</td>
<td>Identify source tables that should contain MedDRA terms and then check to ensure that accurate MedDRA terms appear</td>
</tr>
<tr>
<td>Incorrect formatting</td>
<td>Identify cells in tables that contain values with inconsistent formatting, such as doubled period, incorrect number of decimal places, addition of percentage sign</td>
</tr>
<tr>
<td>Incorrect calculation or threshold</td>
<td>Identify cells in tables where the numeric value for the particular cell is incorrect, or where the table title threshold is not met</td>
</tr>
<tr>
<td>Inconsistent units</td>
<td>Identify cells in tables where the units are not appropriate for the measurement reported, e.g. haematocrit, haemoglobin level, platelet count, etc.</td>
</tr>
</tbody>
</table>

Figure 2: MedDRA Coding Consistency

I2E text analytics is used to check MedDRA coding consistency for regulatory documents, e.g. for clinical trial data. Checks can ensure that the MedDRA label is correct (e.g. “Nausea” rather than “feeling queasy”), that “Nausea” is correctly associated with “Gastrointestinal disorders,” and that the MedDRA ID is correct. This schematic shows the five MedDRA levels relevant to the adverse event “Nausea,” showing the lowest level term (synonym) of “feeling queasy” and the associated MedDRA identifiers for each MedDRA concept.
Summary

The Linguamatics NLP platform can find, highlight and extract structured data elements from regulatory documents, which can provide rapid, systematic, repeatable analysis within regulatory applications. The platform can handle a broad variety of document formats and types, and provide agile querying and integration into enterprise workflows, enabling the flexibility needed to rapidly address critical business issues across regulatory affairs.